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Abstract. Regenerative cardiology recently advanced in patient-specific medicine

by employing somatic cells to derive pluripotent stem cells and differentiate
them into cardiomyocytes.

In this work, the cardiac Monodomain model is coupled with stem cell ionic

models to simulate the action potential propagation in the engineered ventri-
cle. The cardiac model is then discretized by means of Isogeometric Analysis,

carrying out numerical experiments to assess the accuracy of the approach.

Finally, the presented framework is used to investigate the propagation of an
action potential on the calibrated model of the engineered ventricle.

1. Introduction. Human Induced Pluripotent Stem Cells-Derived
Cardiomyocytes (hiPSC-CMs) are spontaneously beating cardiomyocytes derived
from somatic cells. This field was pioneered in 2006 by S. Yamanaka [27], who was
awarded the Nobel Prize in Medicine in 2012 for the discovery of mature cells re-
programmed to become pluripotent and driven toward the cardiac lineage through
differentiation protocols [26]. hiPSC-CMs express the major cardiac markers and
ion channels, they are functionally like adult human cardiomyocytes, and exhibit
expected responses to cardiac stimuli. Although several studies have shown that
hiPSC-CMs have molecular, structural, and functional properties resembling those
of adult cardiomyocytes, they have proved to be less mature than adult cells, as
they do not display the sub-cellular, cellular and tissue-level adult myocyte mor-
phology and sarcomeric protein content and organization [17]. Even though such
cells are molecularly and functionally immature, in the cardiovascular field, hiPSC-
CMs provide a powerful tool to develop reliable in-vitro models for drug toxicity
screening.

The possibility to engineer hiPSC-derived cardiac cell cultures being as similar
as possible to undiseased and diseased regions of the human heart is the first step
to improving the translation of hiPSC-CMs to humans. 2D cultures of hiPSC-
CMs are often used as a platform for investigating new therapies, even if intrinsic
limitations arise in terms of spatial architecture. Re-creating in-vitro a reliable 3D
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tissue is undoubtedly more complex than using standard cell cultures, and several
new aspects have to be considered simultaneously. Besides these efforts, researchers
have bioengineered a three-dimensional model of a human left heart ventricle, used
to measure time-dependent pressure and volume, as described in [19, 18].

Since modern cardiac models have transformed and increased the understanding
of cardiac function in health and disease and the clinical practice of cardiology [30],
a virtual rendering of the engineered ventricle can provide a robust environment
to conduct preliminary investigations, otherwise entailing expensive trial-and-error
tests. In this direction, this work aims to develop a comprehensive framework,
based on Isogeometric Analysis, for electrophysiological simulations representing
the response of engineered tissues. The mathematical modeling of the heart involves
systems of partial differential equations (PDEs) and ordinary differential equations
(ODEs) coupled to model cardiac electrophysiology.

To describe the proposed model, we start, in Section 2, with the description
of the ventricle architecture and we review the micro and macroscopic models of
cardiac electrophysiology at the continuous level. In Section 3, we introduce the
numerical methods to discretize the space, by means of Isogeometric Analysis, and
time. Section 4 provides an extensive analysis of the method accuracy varying the
spatial discretization, that aims to select the scheme for an effective simulation.
Afterward, we calibrate the model and reproduce the propagation of the action
potential in the engineered ventricle. Finally, Section 5 recapitulates the main
findings and derives possible future perspectives.

2. Biophysical model of the engineered ventricle. In the following section,
we briefly present the tissue-engineered scale model of the ventricle, which we model
using an isogeometric approach. Firstly, we describe the geometry of the in-vitro
model and the formulation adopted for the modeling of hiPSC-CMs. Afterward, we
describe the Monodomain formulation, entailing a reaction-diffusion PDE coupled
with a suitable ionic model, employed to model the tissue. Finally, we present the
splitting of the reactive and diffusive terms of the PDE by means of continuous
Strang operator, posing the base for the numerical discretization.

2.1. hiPSC-CMs ventricle model. By Engineered heart tissue we mean three-
dimensional muscle strips, or muscular thin films, that can be generated from iso-
lated heart cells or hiPSC-CMs [7, 31, 9]. Herein, we are taking into account the
tissue-engineered scale model built at Harvard University [19, 18], where the scaf-
fold was designed taking inspiration from the human myocardial tissue architecture
and recreated using a nanofiber production system. The strategy developed for the
production of a nanofiber ventricle is based on pull-spinning fibers on a rotating
ellipsoidal collector. The resulting fabricated thin-wall chambers were then sutured
to tubing or bioreactor components. Catheter sensors were then introduced and
stable contraction of hiPSC-CM ventricles permitted time-dependent pressure and
volume measurements. Thus, this kind of scaffold can promote the assembly of
cardiomyocytes into functional 3D tissue-engineered ventricle chambers.

In order to model this engineered ventricular chamber, we use the ellipsoidal
geometry of the scaffold presented in [19] and depicted in Figure 1. Indeed, the
engineered ventricle manufacturing process consists of seeding and growing hiPSC-
CMs on a scaffold previously formed on a collector. We schematize such a shape
using a constant-thickness extrusion of the molding surface, even though it becomes
irregular during cell maturation.
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Figure 1. Schematic representation of the ellipsoidal scaffold. Di-
mensions are expressed in millimeters.
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Figure 2. The adopted ionic model. Ten seconds of simulations
show the spontaneous firing activity of the transmembrane poten-
tial v (top), and Ca2+ concentration in the sarcoplasmic reticulum
(bottom).

2.2. The ionic model for cells at the microscale. Cardiomyocyte cultures
include spontaneously beating cells, but also express a mixture of different adult
profiles, such as atrial, ventricular, and nodal markers [15]. Because of these sig-
nificant differences with respect to adult myocytes, models of adult cardiac action
potential inadequately describe the hiPSC-CM electrophysiology. To fill this gap,
some specific computational methods have been developed in the last decade. A
primal formulation was published in 2013 [21], then updated in 2018 with a more
flexible Calcium (Ca2+) handling formulation, [22]. This model focused on the
ventricular-like phenotype, the predominant phenotype emerging during the differ-
entiation process. A deep analysis of different ionic models for hiPSC-CMs has been
conducted in [4].
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The latter ionic model is perfectly suitable to model an engineered tissue, since
it recapitulates several relevant features of hiPSC-CMs, such as the Ca2+ concen-
tration and the spontaneous firing activity, shown in Figure 2. Consequently, we
adopt such a model [22] to simulate the electrophysiological activity of the tissue.

The ionic model describes the evolution in time of the transmembrane potential
and several ionic currents following the classical Hodgkin-Huxley formulation. For
a detailed presentation of the equations underlying the model, the reader is referred
to [22]. Herein, we sum up some relevant features. The system of ODEs consists
in a set of 22 variables, differentiated into (i) the transmembrane potential v; (ii)
3 ionic concentrations cs (Nai, Cai, CaSR); (iii) 15 gating variables wr, involved
in 7 different membrane currents; (iv) 3 gating variables wr (RyRo, RyRc, RyRa),
standing for the Ryanodine Receptors’ probabilities of activation, inactivation and
adaptation, needed for the novel characterization of Ca2+ dynamic, [13]. Such an
ionic model is integrated in the tissue formulation through equations (2c), (2d),
and (2e).

2.3. The Monodomain formulation for tissues at the macroscale. The
canonical description of cardiac electrophysiology models the behaviour of the tis-
sue in space (x ∈ Ω) and time (t ∈ (0, T )) by means of two superimposed continua,
representing the intra-cellular and the extra-cellular spaces. These compartments
exchange the charge via the ionic current Iion across the cellular membrane, whose
intensity depends in a point-wise manner (i) on the difference between the intra-
cellular potential ui and the extra-cellular potential ue

v (x, t) = ui (x, t)− ue (x, t) , (1)

and (ii) on the cellular state by means of the s ion concentrations cs and the r gating
variables wr. Inside a single compartment, the charge redistributes according to the
linear diffusion law governed by the conductivity tensorsD, De, for the intra-cellular
and extra-cellular spaces respectively, linking the local cellular state to the one of
the neighboring cells.

Moreover, the charge flux through the cellular membrane depends on the ca-
pacitance Cm and ratio χ – between the membrane surface area and the volume
enclosed by this surface – regulating the time delay, while intra-cellular Iappi and
extra-cellular Iappe currents can be applied to simulate external stimuli. The charge
conservation law finally leads to the Bidomain formulation [25, 8, 11]. It embeds
the single-cell model, described by a system of ODEs (equations (2c), (2d), and
(2e)), into the tissue model (PDEs (2a) and (2b)):

χCm
∂v

∂t
−∇ · (D∇v)−∇ · (D∇ue) + χIion = Iappi in Ω \ ∂Ω× (0, T ) (2a)

−∇ · (D∇v)−∇ · ((D+De)∇ue) = Iappe + Iappi in Ω \ ∂Ω× (0, T ) (2b)

Iion = Iion
(
v, w1, . . . , w18, c1, c2, c3

)
in Ω× (0, T ) (2c)

∂wr (x, t)

∂t
= mr

w

(
v, w1, . . . , w18

)
for r = 1, . . . , 18 in Ω× (0, T ) (2d)

∂cs (x, t)

∂t
= ms

c

(
v, w1, . . . , w18, c1, c2, c3

)
for s = 1, 2, 3 in Ω× (0, T ). (2e)
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The system is then coupled with appropriate initial conditions for both transmem-
brane potential and ionic model variables

v(x, 0) = v0 (3a)

wr(x, 0) = wr
0 for r = 1, . . . , 18 (3b)

cs(x, 0) = cs0 for s = 1, 2, 3. (3c)

and homogeneous Neumann boundary conditions for the no flux assumption through
the external surface ∂Ω (i.e., we suppose an electrically isolated domain):{

n ·D∇ (v + ue) = 0 on ∂Ω× (0, T ) (4a)

n · (D+De)∇ue + n ·D∇v = 0 on ∂Ω× (0, T ) (4b)

where n is the outward pointing normal. Dirichlet boundary conditions can be
included as presented in [8]. Finally, since the charge has to be conserved, the
applied currents have to obey to the compatibility condition:∫

Ω

(Iappi + Iappe ) dx = 0. (5)

The conductivity of an engineered tissue built on a scaffold depends on (i) the
spatial organization and geometrical orientation of the cells [14], and (ii) on the
gap junctions expression and other biological factors related to the cell matura-
tion [19, 18]. The engineered ventricle manufacturing process guarantees a high
cell alignment, quantified by the Oriental Order Parameter, in the circumferential
direction. Coherently, we assume an anisotropic, transversally isotropic, intercel-
lular conductivity tensor with a greater eigenvalue in the fiber direction. The cell
maturation affects the conductivity in an involved manner, resulting in a com-
plex experimental quantification of the parameters. We simplify the mathematical
formulation by assuming that the extracellular and intercellular conductivity are
proportional:

De = λD, (6)

as already done in patient-specific simulations of the human heart [16] and in anal-
ysis of the cardiac tissue [23, 5]. Consequently, we reduce the number of unknown
parameters to two: the intra-cellular conductivity in the direction of the fibers and
in the orthogonal direction, which we can calibrate using the available experimental
results.

The equal anisotropy hypothesis (equation (6)) greatly simplifies the Bidomain
formulation (equations (2a), (2b), and (4)). Indeed, after some algebraic manipu-
lations, presented in [25], we recover the Monodomain formulation:

∂v

∂t
= − 1

Cm
Iion +

1

χCm (λ+ 1)
[λ∇ · (D∇v) + (λIappi − Iappe )]

in Ω \ ∂Ω× (0, T )

n ·D∇v = 0 on ∂Ω× (0, T ) ,

(7)

that describes the electrophysiology of the tissue with a single PDE coupled to (2c),
(2d), and (2e). Clearly, the Monodomain formulation is less demanding from the
computational point of view, leading to better-conditioned matrices in the discrete
approximation.
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Figure 3. Schematic representation of the Strang splitting ope-
rator.

2.4. Strang operator splitting. To solve the Monodomain formulation in equa-
tion (7), we adopt the Strang’s symmetrical splitting scheme [25], which is a second-
order accurate operator. This fractional step method separates the integration in
time of the diffusive and reactive terms [23, 24] subdividing the solution process in
an arbitrary time interval (t ∈ [tn, tn+1]) in three steps as schematized in Figure 3.

Step 1. Given the initial conditions v(tn), w
r(tn), and cs(tn) we integrate the re-

active term (i.e., the ionic model) to find v, wr, and cs at time tθ/2, being θ/2 the
midpoint of the time interval. The integration of the system:

∂v

∂t
= − 1

Cm
Iion

(
v, w1, . . . , w18, c1, c2, c3

)
∀t ∈

[
tn, tθ/2

]
(8a)

∂wr

∂t
= mr

w

(
v, w1, . . . , w18

)
for r = 1, . . . , 18 ∀t ∈

[
tn, tθ/2

]
(8b)

∂cs

∂t
= ms

c

(
v, w1, . . . , w18, c1, c2, c3

)
for s = 1, 2, 3 ∀t ∈

[
tn, tθ/2

]
(8c)

returns vθ/2, w
r
θ/2, c

s
θ/2.

Step 2. Given the initial condition vθ/2, we integrate the diffusive term by solving
the PDE:

∂v

∂t
= − 1

χCm (λ+ 1)
[λ∇ · (D∇v) + (λIappi − Iappe )] inΩ, ∀t ∈ [tn, tn+1] (9a)

n ·D∇v = 0 on ∂Ω, ∀t ∈ [tn, tn+1] (9b)

to compute vθ.

Step 3. Given as initial conditions vθ, w
r
θ/2, c

s
θ/2, we integrate the reactive term for

t ∈
[
tθ/2, tn+1

]
and the system

∂v

∂t
= − 1

Cm
Iion

(
v, w1, . . . , w18, c1, c2, c3

)
∀t ∈

[
tθ/2, tn+1

]
(10a)

∂wr

∂t
= mr

w

(
v, w1, . . . , w18

)
for r = 1, . . . , 18 ∀t ∈

[
tθ/2, tn+1

]
(10b)

∂cs

∂t
= ms

c

(
v, w1, . . . , wk, c1, c2, c3

)
for s = 1, 2, 3 ∀t ∈

[
tθ/2, tn+1

]
(10c)
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gives as a result v(tn+1), w
r(tn+1), c

s(tn+1).
We remark that the operator does not discretize in time the equations, as high-

lighted in [25]. Indeed, the time integration schemes will be introduced in the
following.

3. Isogeometric framework and discrete problem. Isogeometric Analysis
(IGA) is the framework for the spatial approximation of PDEs herein adopted,
which uses spline functions for the geometrical representation of the computational
domain and the approximation of the unknown fields. Thus, the geometrical map-
ping described in Section 3.2 defines the basis functions used in the computation of
the transmembrane potential and its derivatives.

3.1. B-spline functions for approximations. In the present work, we test sev-
eral shape functions to assess the effect of the polynomial degree and continuity
at the element interfaces on the numerical approximation of potential. We focus
on multi-variate B-splines basis functions, defined through the tensor product of
uni-variate B-splines, as they easily control these features. Indeed, the degree p and
the open knot vector Ξ =

{
ξ1, ξ2, . . . , ξmξ+p+1

}
define the mξ splines Ha (ξ) in the

parametric direction ξ through the Cox-de Boor recursive formula:

for p = 0 Ha;0 (ξ) =

 1 if ξa ≤ ξ < ξa+1

0 otherwise

for p = 1, 2, 3, . . . Ha;p (ξ) =
ξ − ξa

ξa+p − ξa
Ha;p−1 (ξ) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
Ha+1;p−1 (ξ) .

(11)
By increasing the multiplicity of a knot of the vector Ξ, we reduce the spline con-
tinuity at that element interface.

To define functions in a 3D space, we take the tensor product of uni-variate
B-splines H, L, and K in three different parametric directions ξ, η, ζ, for which
similar definitions hold. Moreover, assuming a lexicographical order, we recast such
functions in the vector N as follows:

Na = Hb (ξ) Lc (η)Kd (ζ) . (12)

Following the standard isogeometric approach, we define the geometry of the body
as a linear combination of basis functions and control points – also referred as nodes
– coordinates Ba as follows:

x (ξ, η, ζ) =

m∑
a=1

Na (ξ, η, ζ)Ba, (13)

where m is the number of three-variate splines: m = mξ ×mη ×mζ .
In this work, we test three sets of splines to approximate v:

• degree p = 1 and continuity C0, equivalent to linear hexahedral finite elements.
• high order splines with C0 continuity, also known as Bernstein polynomials,
obtained repeating the internal knots p times.

• high order splines with maximum continuity Cp−1, obtained using internal
knots with multiplicity equal to one.

The accuracy of the basis functions is investigated in Section 4.1.
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Figure 4. Schematic representation of the workflow to define the
geometrical mapping. The 8 red dots (4 on the external and 4 on
the internal surfaces) highlight the locations of the singularities of
the geometrical mapping.

3.2. Computation of the geometrical mapping. In this work, we represent
the ventricle as an extrusion between two opposite target surfaces mapped through
the strategy herein presented and depicted in Figure 4.

The pipeline to define a structured mesh composed of hexahedral elements is
similar to the one presented in [5], and it is articulated in four steps as follows.

Step 1. Initially, we set up the parametric space (i.e., we define the degree and knot
vectors) to be mapped into the ventricle. We use a single three-variate patch to
represent the ventricle selecting two opposite faces of the cube – for instance, the
planes spanned by ξ and η at ζ = 0 and ζ = 1 – as the parent surfaces mapped
into internal and external surfaces, in Figure 4 represented in green and blue, re-
spectively. Coherently, the third parametric direction ζ refers to the transmural
direction of the ventricle. We initially use a single linear element in such a direction
to mimic the extrusion.

Step 2. The second step consists in mapping the two parametric surfaces (indexes
ζ̄ ∈ 0, 1) into the two main physical surfaces (indexes j ∈ {int, ext}) one at a time.
Each surface is represented as:

x∗,j (ξ, η, ζ̄) = mξ×mη∑
s=1

Ns

(
ξ, η, ζ̄

)
B∗,j

s (14)
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where B∗,j
s are the coordinates of the control points related to the splines with

support on the parametric surface (i.e., half of the set of splines). We optimize the
control point coordinates such that the distance between the analytical surface xa,j

and its B-spline approximation x∗,j is minimized.
Such a problem is formalized as follows:

B∗,j = argmin
B∗,j

{
∥xa,j − x∗,j (B∗,j) ∥2} , (15)

where we consider the standard L2 norm as the metric for the computation of the
distance between the surfaces sampled in a discrete set of points. Since the system
is overdetermined, we solve equation (15) by means of least square method. In
our simulation, we use equidistant points to sample the physical geometry and the
parametric space.

In this application, the center of the selected face of the single-patch parametric
space is mapped into the ventricle apex, whereas the edges correspond to the circular
base. This strategy enables the mapping of the 3D engineered ventricle avoiding
mapping singularities near the ventricle apex, which was the region of interest in
the experimental investigation. However, it comes at a cost of eight singularities –
corresponding to the vertex of the parametric cube – located at the ventricle base,
as shown in Figure 4. Nevertheless, according to [12], they do not affect significantly
the accuracy of the analysis because no Gauss point lies in those positions. If the
surface under consideration is more complex, an alternative strategy is provided in
Appendix A.

Step 3. Once the surfaces are mapped, we extrude the volume in direction ζ inter-
polating the two sets of coordinates B∗,j , j ∈ {int, ext} with a single linear element.
Indeed, a one-to-one relation holds between the control points on opposite surfaces
thanks to the tensor product structure of the parametric space.

Step 4. In the last step, the mesh is refined by employing the order elevation and
knot insertion algorithms to achieve a suitable discretization for accurate simula-
tions. For more details on the refinement scheme, the reader is referred to [6]. We
remark that in this work we adopt the same polynomial degree in all the parametric
directions, even in the transmural direction.

3.3. Spatial discretization. To discretize the Monodomain formulation, we con-
sider the weak formulation of the PDE (7) defining the trial space for the trans-
membrane potential as

V =
{
v|v ∈ H1 (Ω, [0, T ])

}
, (16)

and assuming the test space δV equivalent to V. In the previous definition,
H1 (Ω, [0, T ]) is the Sobolev space of functions with square integrable first deriva-
tives in Ω. If Dirichlet boundary conditions are applied on ∂ΩD and Neumann
boundary conditions are applied on ∂ΩN , the formulation has to be modified as
in [8] (∂ΩN ∪ ∂ΩD = ∂Ω and ∂ΩN ∩ ∂ΩD = ∅). Moreover, we assume the gating
variable wr, the ionic concentration cs, and their virtual variations (δwr and δcs)
in

WC =
{
f |f ∈ L2 (Ω, [0, T ])

}
, (17)

where L2 (Ω, [0, T ]) is the space of square integrable functions in Ω.
Then, the weak form of the Monodomain formulation combined with the Strang

splitting scheme reads as follows [8]: ∀t ∈ [0, T ] , find v(t) ∈ V, wr(t), cs(t) ∈ WC
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such that the following relations hold for the first and the third steps of the splitting:

∫
Ω

δv
∂v

∂t
dx = − 1

Cm

∫
Ω

δv Iion dx ∀δv ∈ δV (18a)∫
Ω

δw
∂wr

∂t
dx =

∫
Ω

δwmr
w dx ∀δw ∈ WC, r = 1, . . . , 18 (18b)∫

Ω

δc
∂cs

∂t
dx =

∫
Ω

δcms
c dx ∀δc ∈ WC, s = 1, 2, 3 (18c)

and the following equation holds for the second step (9a): ∀δv ∈ δV∫
Ω

δv
∂v

∂t
dx = − 1

χCm (λ+ 1)

(∫
Ω

λ∇δv ·D∇v dx+

∫
Ω

δv (λIappi − Iappe ) dx

)
.

(19)
Replacing the functional spaces with a finite-dimensional approximation, the

transmembrane potential v and the test functions δv are written as a linear combi-
nation of shape functions N – derived from the geometrical representation following
the isoparametric paradigm – and control variables (i.e., the equivalent of the nodal
values in the finite element method) v̂ and δv̂ as

v (x, t) = N (x) v̂ (t) (20)

δv (x, t) = N (x) δv̂ (t) . (21)

In the present work, we test several shape functions to assess the accuracy of the
discretizations. Therefore, the symbol N (x) refers to one of the generic sets of
adopted basis functions.

By replacing equations (20) and (21) in (19), we obtain the semi-discrete formu-
lation of the PDE:

M ˙̂v = −Kv̂+ Î
app

, (22)

where the entries of the mass M and stiffness K matrices, according to the Einstein
notation, are given by:

Mab =

∫
Ω

NaNb dx, (23)

Kab =
λ

χCm (λ+ 1)

∫
Ω

∂Na

∂xi
dij

∂Nb

∂xj
dx, (24)

and the entries of the vector Î
app

read as:

Îappa = − 1

χCm (λ+ 1)

∫
Ω

Na (λI
app
i − Iappe ) dx. (25)

In the numerical computation of these integrals, we employ the standard Gauss
quadrature rule with p + 1 Gauss points in each direction per element, where p is
the basis functions degree. Electrophysiological simulations with detailed cellular
models may be computationally demanding [25] and to reduce this effort we adopt
the Ionic Current Interpolation (ICI) approach, as shown in [23]. In this work, we
investigate the effect of the basis function degree and continuity on the accuracy of
such an approach.

The ICI method interpolates the ionic current as:

Iion = N (x) Î
ion

(t) . (26)

where the components of the vector Î
ion

are computed in terms of control variables:

Î
ion

a = Iion
(
v̂a, ŵ

1
a, . . . , ŵ

18
a , ĉ1a, ĉ

2
a, ĉ

3
a

)
, (27)
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which results from the interpolation of the state variables:{
wr (x, t) = N (x) ŵr (t) for r = 1, . . . , 18 (28a)

cs (x, t) = N (x) ĉs (t) for s = 1, 2, 3. (28b)

Substituting equation (26) in equation (18) and introducing the same approximation
of the state variables (28) for their test functions:{

δw (x, t) = N (x) δŵ (t) (29a)

δc (x, t) = N (x) δĉ (t) , (29b)

a system of ODEs is derived for steps one and three of the Strang scheme, where
the components of the control variable vector m̂r

w are computed as:

(m̂r
w)a = mr

w

(
v̂a, ŵ

1
a, . . . , ŵ

18
a

)
for r = 1, . . . , 18 (30)

and similar relations hold for m̂s
c. Indeed, every entry corresponds to the integration

of one control variable, since the mass matrix – on the left and right-hand sides of
(18) – is positive definite:

˙̂v = − 1

Cm
Î
ion

(31a)

˙̂wr = m̂r
w for r = 1, . . . , 18 (31b)

˙̂cs = m̂s
c for s = 1, 2, 3. (31c)

3.4. Time discretization. To discretize in time the Monodomain formulation, we
subdivide the time into equal intervals of size ∆t for simplicity, although more re-
fined schemes can be used, since our focus is on spatial discretization. In every time
step, we solve the split form of the problem (equations (31) and (22)) using different
schemes. Indeed, implicit-explicit schemes are often employed since they guarantee a
compromise between numerical stability and computational
efficiency, [8].

The non-linear system of ODEs (31) is integrated using the explicit Euler method,
with a reduced step size to guarantee sufficient accuracy. Therefore, when consid-
ering the sub-step [tk, tk+1], we adopt the step size ∆t̃ = ∆t/(2k):

v̂k+1 = v̂k − ∆t̃

Cm
Î
ion

(tk) (32a)

ŵr
k+1 = ŵr

k +∆t̃ m̂r
w (tk) for r = 1, . . . , 18 (32b)

ĉsk+1 = ĉsk +∆t̃ m̂s
c (tk) for s = 1, 2, 3. (32c)

In this work, we perform 100 sub-steps (i.e., k = 100) during the integration of
every reactive step.

In the diffusion step, we use a single increment ∆t adopting the implicit, second-
order accurate, Crank-Nicolson method to increase the stability of the scheme. The
resulting discrete formulation reads as:(

M+
∆t

2
K

)
v̂n+1 = Mv̂k+1 +

∆t

2

(
−K v̂k+1 + Î

app

n + Î
app

n+1

)
. (33)
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Figure 5. Relative errors in the time trace for basis C0 (top)
and Cp−1 (bottom) basis functions. The black curve, representing
linear functions, is repeated in both plot for better comparison.

4. Numerical simulations. In this section, we present the results of the elec-
trophysiological simulations performed using the Python-based1 library Nutils [32].
We assess the proficiency of the presented approach for cultured tissue since, most
of the studies in the literature focus on native ones.

The conductivity of the engineered ventricle – characterized by a single scalar
value d in 1D rather than a matrix D – is reduced with respect to the native cardiac
tissue, entailing significant implications in the accuracy of the simulation. Indeed, a
reduction in the tissue conductivity, for a fixed discretization, results in an increased
error in the numerical approximation [33]. Therefore, we first focus on the accuracy
in a simple 1D problem: we investigate such a feature limiting the discussion to
hiPSC-CMs and varying the normalized conductivity d∗

d∗ =
λ

χCm (λ+ 1)
d

[
m2

s

]
. (34)

The Thiele modulus was used to distinguish between reaction-dominated and
diffusion-dominated electrophysiological simulations [33] involving several values of
conductivity and ionic models. Since we focus on a single-cell model, the Thiele
modulus and the normalized conductivity are equivalent definitions up to a constant
value.

Based on these results, the 3D model is calibrated and a complete simulation of
the action potential propagation in the ventricle is presented. Parameters adopted
to perform the simulations are provided in the text, while the initial conditions are
provided in Appendix B. Moreover, for the parameters characterizing the cellular
model, the reader is referred to [22].

1Part of the code will be made available on request.
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4.1. Accuracy investigation. We investigate the response of a straight fiber
(length L = 3.2 mm) to assess the effect of different basis function degrees and
continuity on the accuracy of the numerical discretization for different values of
tissue conductivity. Specifically, we test the basis functions of orders p = 1, 2, 3
and continuity C = 0, p − 1 presented in Section 3.1 for three different values of
conductivity d∗ ∈ {1.0, 0.1, 0.01}mm2/ms.

We conduct the convergence analysis under h-refinement simulating a single ac-
tion potential propagation (T = 1250 ms) – triggered by 10 ms of stimulation at
the left end (x⋆ = 0 mm) – using a time step size ∆t = 10−2 ms and an element
sizes h ∈ {0.32/(2k), k = 0, 1, . . . , 7} mm. Since no analytical solution is available,
we adopt as a reference vref an overkill simulation performed using cubic finite
elements (p = 3, C = 0) on a four times finer mesh (h = 0.32/(29) mm), and
∆t = 10−4 ms. The results are compared using different metrics.

4.1.1. Error in the time trace. We analyze the convergence of the potential in a
fixed point of the fiber (x⋆ = 2.7933 mm, such that the point is never a node)
defined as:

errt =

√√√√∫ T

0
(v(x⋆, t)− vref (x⋆, t))

2
dt∫ T

0
(vref (x⋆, t))

2
dt

. (35)

The results of the analyses are presented in Figure 5 and discussed as follows.
When the mesh is refined, the error decreases reaching a plateau due to the resid-

ual time discretization error, as in [28]. Indeed, a finer time step is adopted in the
computation of vref . Therefore, after a threshold value, both the element size h
and the time step size ∆t must be refined to improve the accuracy of the solution.
Results also highlight that the convergence path depends on the conductivity, con-
firming that for reaction-dominated simulations the mesh must be finer to retrieve
a predefined level of accuracy [33]. The basis function degree and continuity do
not affect significantly the accuracy of the solution. Indeed, the error stabilizes
approxiṁately for the same number of degrees of freedom (dofs). However, a high
continuity (i.e., C = 1, 2) provides a monotone convergence path, avoiding the error
oscillation before the plateau.

4.1.2. Error in the spatial representation of the wave. We analyzed the convergence
in a fixed instant t⋆, defined as:

errs =

√√√√∫ L

0
(v(x, t⋆)− vref (x, t⋆))

2
dx∫ L

0
(vref (x, t⋆))

2
dx

. (36)

In this case, we select different instants for different values of conductivity (t⋆ =
11 ms for d∗ = 1, 0.1mm2/ms, and t⋆ = 95 ms for d∗ = 0.01mm2/ms) to avoid the
analysis of completely depolarized domains.

Results are presented in Figure 6 and herein discussed.
Differently from the previous analysis, a direct comparison between values of con-

ductivity is no more applicable. Indeed, the temporal shape of an action potential is
not affected by the conductivity values up to a temporal shift, while this is not true
for the spatial distribution, since the entire impulse is not included in the physical
domain. Nevertheless, they confirm the previous findings, suggesting a qualitative
independence of the accuracy on the basis function continuity and degree for the
analyzed time steps.



14 SOFIA BOTTI AND MICHELE TORRE

Figure 6. Relative errors in spatial representation of the wave for
C0 (top) and Cp−1 (bottom) basis functions. The black curve, rep-
resenting linear basis functions, is repeated in both plot for better
comparison.

Figure 7. Relative errors on arrival time, for C0 (left) and Cp−1

(right) basis functions. The black curve, representing linear basis
functions, is repeated in both plot for better comparison.

4.1.3. Error in the wave arrival time. Having assessed the effect of the conductivity
on the accuracy, we specialize our study on the engineered tissue. We further
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Figure 8. Calibration of the ventricle model. Fiber direction is
represented on the B-spline volume in Figure 8a. The conductivity
in the fibers direction is computed as in Figure 8b to reach the
desired experimental wave velocity.

investigate the approximation of wave arrival time in x⋆ = 2.7933 mm, defined as:

erra =

∣∣∣∣ t̄− t̄ref

t̄ref

∣∣∣∣ , where t̄ = argmax
t∈[0,T ]

dv(x⋆, t)

dt
(37)

through a forward difference.
In such a definition t̄ref represents the arrival time, computed with the same

approach, of the reference solution.
As depicted in Figure 7, we focus only on the conductivity value qualitatively

representative of our problem, which we anticipate to be d∗ = 0.01mm2/ms.
In this case, results highlight that the curves related to the high continuity of

splines C = 1, 2 reach the plateau for a coarser mesh. The highly continuous cubic
splines further improve the accuracy with respect to quadratic splines of the same
type. However, the gain in accuracy comes at a cost of a denser matrix structure
and, therefore, a greater computational effort. Consequently, we adopt quadratic
C1 B-splines for the analysis of the ventricle as they represent a good compromise
between accuracy and computational efficiency, producing a stable convergence path
in the previous analysis.

We conclude this section by explaining the differences between the results of the
error norms. The wave arrival is mainly influenced by the conduction velocity, which
in turn is related to the diffusion term, not to the shape of the action potential.
Since the spatial derivatives of the basis functions are only involved in the diffusive
term, the wave arrival time may be more sensitive to the continuity of the basis
functions than other error metrics. Moreover, the dependence of the solution on
the ratio between reactive and diffusive terms has already been observed in [33].

4.2. Electrophysiological simulation of the engineered ventricle. In the
ventricle, cardiomyocytes derived by hiPSCs are arranged in fibers conferring an
anisotropic microstructure to the tissue [19]. It results in a speed propagation of
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the Ca2+ wave in the fiber direction a0 higher than in the orthogonal directions.
The speed of propagation of the Ca2+ signal measured in the engineered ventricle
using an imaging technique is 5.2 cm/s in the direction from the apex to the base,
while, to compute the velocity in the fiber direction, we refer to an additional in-
vestigation on in-vitro cultured tissues [14]. Indeed, they report the ratio of the
velocities for the value of interest of the orientation order parameter [22], which
recapitulates the fiber organization in the ventricle. The estimated velocity is equal
to 14 cm/s.

To represent this feature, we defined an anisotropic, transversely isotropic, con-
ductivity tensor D, characterized by two different eigenvalues: d∥ (multiplicity
m(d∥) = 1) associated to a0, and d⊥ (multiplicity m(d⊥) = 2) that spans the
space in the orthogonal directions. We assume that fibers are oriented in the pull-
spinning direction used to build the scaffold, approximately 5◦ with respect to the
XY plane, as shown in Figures 8a and 11.

Since the conductivity values are unknown, a calibration to fit the experimental
wave velocity is needed: we compute the conductivity for every principal direction d∗j
by constructing a response curve, shown in Figure 8b. The ionic model is unaffected
by this process. We simulate 50 s of isotropic action potential propagation (∆t =
0.01 ms) in a flat strip (12.1×0.02 mm, h = 0.01 mm, p = 2, C = 1) computing the
average Ca2+ speed for different conductivity values. The conductivities in the two
orthogonal directions are then obtained by interpolation of the discrete response
curve substituting d∗ with dj = d∥ or dj = d⊥ in equation (34).

The conductivity calibration results in the following coefficients of the conduc-
tivity tensor: d∗∥ = 0.0094 and d∗⊥ = 0.0256 mm2/ms. Clearly, more sophisticated

procedures are available in the literature [34, 3, 1, 2]. However, they require com-
plete sets of imaging data in space and time to solve the inverse problem, which is
out of the scope of this work.

Once the computational framework to simulate the electrophysiological activity
of the engineered ventricle is completed, we perform the simulation of an action
potential propagation (T = 1250 ms, ∆t = 0.01 ms) on the ellipsoidal geometry
using a mesh composed by 756012 quadratic C1 B-splines.

The tissue is stimulated using an applied current (Iappi = 20 pA) for 100 ms
spatially distributed near x = (0, 4.5, 2) mm to mimic the electrode used in the
experimental protocol. The initially repolarized membrane (v = −74.9 mV) under-
goes an action potential that propagates from the stimulation site toward the rest
of the tissue before the spontaneous firing activity of the cells.

The elongated shape of the wave (for instance: v at time t = 0.2 s, plot (a))
confirms the faster propagation in the fiber direction. Moreover, the simulation
reveals a smooth wavefront, for both the transmembrane potential and the inter-
cellular Ca2+, as shown in Figure 9. Finally, the opposite wavefronts correctly
merge on the posterior side of the ventricle, confirming the reliability of the pro-
posed approach and the possibility of conducting trial-and-error investigations on
the in-silico replica of the ventricle.
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Figure 9. Simulation of the engineering ventricle. Representation
of the transmembrane potential (on the left) and intracellular Ca2+

concentration (on the right) on the front (a), back (b), and top (c)
views (see Figure 8a) for representative time steps.

5. Conclusions and future perspectives. In this work, we have developed a
computational framework useful to investigate the electrophysiological response
of the engineered ventricle [19]. To model the tissue, we have included an ad-
vanced ionic model [22], tailored for hiPSC-CMs, into theMonodomain formulation.
Furthermore, we have reproduced the fibrous structure of the construct using an
anisotropic conductivity tensor with principal directions variable over the ellipsoidal
geometry.
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The mathematical formulation is discretized, in the spirit of a Galerkin method,
using several sets of B-splines. Differently from previous investigations [23, 5], we
are not approaching the human adult tissue, but we focused on a novel regenerative
medicine frontier based on hiPSC-CMs technology, which entails different numerical
issues. We have assessed the dependence of the discretization accuracy on the basis
function degree and continuity, using several metrics to define the error. Based on
our findings, quadratic C1 B-splines are a good compromise between accuracy and
computational effort. Such an isogeometric framework was then employed in the
calibration of the numerical model and in the simulation of the propagation of an
action potential in the engineered ventricle.

In summary, our results demonstrate that innovative stem cell tissues and
organoids can be properly represented in-silico, with implications for regenerative
medicine research. Since hiPSC-CMs have the same genetic heritage of the donor,
this may extend patient-specific assays from individual cells to complete organ mod-
els. Specifically, our computational framework enables fast parametric investigation
when considering different scenarios depending on the patient-specific conditions.
Conversely, laboratory tests require a higher number of ventricle replications to
guarantee a significant statistical sample entailing a great economic effort.

Once more, maturation studies provide innovative pools of hiPSC-CMs in the
direction of a more adult phenotype. Since the in-silico framework reveals the
possibility of disentangling the ionic model from tissue properties, we offer a tool to
simulate the variation of the physiological response due to the maturation process,
considering several ionic models for different maturation states.

Furthermore, investigations could aim to model a more complex experimental
setup, such as a hole in the virtual geometry using an immersed technology [29].
Investigations on injured tissue, considering a single-hole injury or a hole pair, may
provide a better understanding of complex pathological phenomena, for instance,
the formation of spiral waves. In such a context, the non-homogeneous distribution
of the tissue properties should be considered in the future to assess their effect in
pathological conditions.

This work only considers cardiac electrophysiological simulations, neglecting tis-
sue contraction. Mechanics could also be included, as shown in [20], further im-
proving the realism of the simulation. Indeed, the in-vitro setup also investigates
the intraventricular pressure-volume loops using catheter-based systems to assess
the effect of compounds on tissue contractility.
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Appendix A. Mapping procedure for unstructured surfaces. In this sec-
tion, we present an alternative algorithm to map a surface, provided through a
stereolithography file, using a B-spline manifold. Indeed, if the analytical formula-
tion describing the surface is unknown, the definition of the relation that associates
the points on the spline surface to the points on the real surface may be a complex
task.
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Figure 10. Mapping procedure for faceted surfaces.

The procedure involves several steps, as shown in Fig. 10. For illustration
purposes, we apply the methodology to remap a portion of the apex of a real
human left ventricle although it is not used in the present work.

• The first step subdivides the faceted surface into patches, requiring that every
point in the patch can be projected on a predefined plane without intersecting
the patch surface, clearly the choice of the plane can vary from patch to patch.

• Once the surface is subdivided in patches, we interpolate the flat projection
of the 4 boundaries – subdivided using 4 user-defined points – using 2 sets of
B-splines, adopting the same degree and knot vector on opposite edges.

• Given the planar interpolation of the 4 edges, we fill the flat spline surface by
means of transfinite interpolation of the control point coordinates, as described
in [10].

• The third coordinate, the elevation, of the points representing the manifold is
retrieved by means of L2 projection, avoiding the definition of the ordering of
the points. Indeed, the parametric coordinates of a point are mapped into the
planar B-spline surface and then elevated interpolating the nodes coordinates
of the original facet.

• Given the geometrical mapping of every patch, either we can use a multipatch
geometry or we can remap the surface into a single patch by means of L2

approximation if the patch union constitutes a rectangle in the parametric
space.

Appendix B. Computational details. The first version of the Paci ionic model
is available from the CellML repository (http://models.cellml.org/cellml) and
the updated set of equations and the complete list of parameters are presented in
the online Supplementary Material of [22].

The magnitude of the applied current is λIappi − Iappe = 20pA, and the initial
conditions are computed simulating 800s of spontaneous activity of a single cell,

http://models.cellml.org/cellml
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Figure 11. Zoom on the front of the fiber orientation: in green the
direction a0 and in white a reference line (tangent to the scaffold
and lying in a plane parallel to the XY plane).

starting from the conditions reported in [22], to ensure steady-state conditions.
They are summarized, according to the notation in [22], in Table 1.

Variables Units Values
V0 V -0.0749
CaSR mM 0.0937
Cai mM 3.7968e-05
d0 - 8.2522e-05
f10 - 0.7411
f20 - 1.0000
fCa0 - 0.9977
Xr10 - 0.2661
Xr20 - 0.4349
Xs0 - 0.0314
h0 - 0.7454
j0 - 0.0761
m0 - 0.0996
Xf0 - 0.0249
q0 - 0.8417
r0 - 0.0056
Nai mM 8.6482
mL0 - 0.0023
hL0 - 0.0812
RyRa0 - 0.0387
RyRo0 - 0.0260
RyRc0 - 0.0786

Table 1. Initial conditions

To better highlight the fiber orientation, in Figure 11 we zoom a portion of the
wave front at coordinates (−3.28, 3.37, 2.34) mm with respect to the frame placed in
the center of the half-ellipsoid. Specifically, the contour plot of the transmembrane
potential at time t=0.2 s (see Figure 9) is represented.
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